Maeckes logo

<    1      2      3      4      5      6      7      8      9     10     11    >


Binomial theorem

If the first variable of the binomial theorem is 1, the power series development becomes

for each whole, rational and negative exponent.

 


Explanation

From the fundamentel theorem of mathematics follows that you can write the function f (x) = (1 + x)n as

and for x = 0 it gives 1 = a0. The first derivative is

and for x = 0 it gives n = a1. The second derivative is

and for x = 0 it gives n(n − 1) = 2a2. By substitution of a0, a1 and a2 you get

 


Example 1

For negative exponents, geometric progressions are created

(1 + x)−1 = 1 − x + x2 − x3 + x4 − x5 + x6 − x7 + ···

(1 + x)−2 = 1 − 2x + 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 + ···


 


Deutsch   Español   Français   Nederlands   中文   Русский