Maeckes logo

<    1      2    >


Vieta's general formulas

The general formulae of Viète allow the coefficients of a polynomial to be expressed in the sums and products of its roots.

 


Explanation

A polynomial of the degree n

P(x) = anxn  + an−1xn−1  + ··· + a2x2 + a1x + a0 = (x − x1)(x − x2) ··· (x − xn)

with real or complex coefficients, in which an ≠ 0, has according to the fundamental theorem of algebra n zeros x1, x2, ... , xn. The formulas arise by calculating

     for    j = 1, 2, ... , n

where

 


Example 1

For a first-degree polynomial

x + p

it gives

x1 = −p

 


Example 2

For a second-degree polynomial

x2 + px + q

it gives

x1 + x2 = −p
x1x2 = q

 


Example 3

For a third-degree polynomial

x3 + px2 + qx + r

it gives

x1 + x2 + x3 = −p
x1x2 + x1x3  + x2x3 = q
x1x2x3 = −r

 


Example 4

For a fourth-degree polynomial

x4 +px3 + qx2 + rx + s

it gives

x1 + x2 + x3 + x4 = −p
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = q
x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −r
x1x2x3x4 = s

 


History

The formulas were developed by the French mathematician Albert Girard (1595 - 1632).


Deutsch   Español   Français   Nederlands   中文   Русский