Maeckes logo

<    1      2      3      4      5      6      7      8      9    >


Squares of primes

The squares of primes (except 22 and 32) are all on the same radius of the number circle.

 


Explanation

There are three types of natural numbers. Except the 0 they can all be derived.

3 ×   3 6 9 12 15 18 21 24 27 30 33 36 39 ...
2 ×   2 4 8 10 14 16 20 22 26 28 32 34 38 ...
rest   1 5 7 11 13 17 19 23 25 29 31 35 37 ...

The squares on the bottom row are on the ray that starts with the number 1.

Squares    i2 12 52 72 112 132 172 192 232 252 292 312 352 372 ...
Vakue −1 1 25 49 121 169 289 361 529 625 841 961 1225 1369 ...

The distances between the squares can be split in two strokes. The 4-stroke 12 → 52, 72 → 112, 132 → 172, 192 → 232 delivers the distances 0, 2, 4, 6, 8, ... and the 2-stroke i2 → 12, 52 → 72, 112 → 132, 172 → 192 delivers the distances ø, 0, 1, 2, 3, 4, ... This sequence also appears in the repeating fraction

The development of these two strokes can be shown in a single radius of the prime number cross.

Peel 4-s Ray 2-s
42   985
41 312 →4
40 937
39 913
38 889
37 865
36 8← 292
35 817
34 793
33 769
32 745
31 721
30 697
29 673
28 649
27 252 →3
26 601
25 577
24 553
23 6← 232
22 505
21 481
20 457
19 433
18 409
17 385
16 192 →2
15 337
14 313
13 4← 172
12 265
11 241
10 217
9 193
8 132 →1
7 145
6 2← 112
5 97
4 73
3 72 →0
2 0← 52
1 12 →ø
0 i2

The imaginary unit is defined as i 2 = –1 and is located on the unit circle. It is a mirror image of the number +1.

 


Deutsch   Español   Français   Nederlands   中文   Русский