Maeckes logo

<    1      2      3    >


Power rule

The power rule for deriving a power function is

 


Explanation

We use the function

what you can also write as

Differentiating with the product rule gives

So we can easily see that in general

 


Example 1

For the function

f (x) = x3 + 4x2 + x − 6

you can calculate the derivative as

f ′(x) = 3x2 + 8x + 1

and at the point x = 3 this gives

f ′(3) = 3·32 + 8·3 + 1 = 27 + 24 + 1 = 52

 


Example 2

For the function

f (x) = x3 + 4x2 + x − 6

you can calculate the quadratic differential as

f ″(x) = 6x + 8

and at the point x = 3 this gives

f ″(3) = 6·3 + 8 = 18 + 8 = 26

 


Deutsch   Español   Français   Nederlands   中文   Русский